Math 140 Introductory Statistics

Professor B. Ábrego Lecture 3 Sections 2.1, 2.2

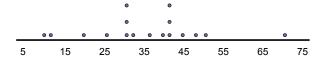
People added to the class.

- Sara Nejad Hashemi
- Next on the list

- · Nazir Atayee
- Expo Aggie
- Mirna Chamorro
- · Ziyao Zhu
- Sean-Michael Schumacher
- Ruth Zepeda
- · Kent Allison

Wait till the END of the class to ask me for a permission number.

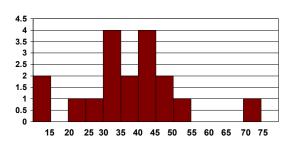
Quantitative vs. Categorical Data


- Quantitative: Data about the cases in the form of numbers that can be compared and that can take a large number of values.
- Categorical: Data where a case either belongs to a category or not.

Different ways to visualize data

- Quantitative Variables
 - Dot Plots
 - Histograms
 - Stemplots
- Categorical Variables
 - Bar Graphs

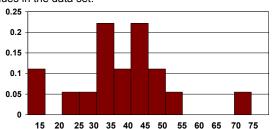
Dot Plots


- Each dot represents the value associated to a case.
 - Dots may have different symbols.
 - Dots may represent more than one case.

5

Histograms

- Groups of cases represented as rectangles or bars
- The vertical axis gives the number of cases (called frequency or count) for a given group of values.
- By convention borderline values go to the bar on the right.
- There is no prescribed number for the width of the bars.



Dot Plots

- Dot Plots work best when
 - Relatively small number of values to plot
 - Want to keep track of individuals
 - Want to see the shape of the distribution
 - Have one group or a small number of groups that we want to compare

Relative Frequency Histograms

- The height of each bar is the proportion of values in that range. (always a number between 0 and 1)
- The sum of the heights of all the bars equals 1.
- To change a regular histogram to a relative frequency histogram just divide the frequency of each bar by the total number of values in the data set.

Histograms (Relative Frequency)

- Histograms work best when
 - Large number of values to plot
 - Don't need to see individual values
 - Want to see the general shape of the distribution
 - Have one or a small number of distributions we want to compare
 - We can use a calculator or computer to draw the plots

Stemplots

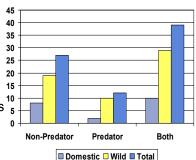
- Also called stem-andleaf plots.
- Numbers on the left are called **stems** (the first digits of the data value)
- Numbers on the right are the leaves. (the last digit of the data value)

Mammal speeds:

11,12,20,25,30,30,30,32,35,39,40,40,40,42,45,48,50,70.

- 1 12 2 05 3 000259 4 000258 5 0 6 7 0
- 3 | 9 represents 39 miles per hour.

Stemplots (split)


- Each original stem becomes two stems.
- The unit digits 0,1,2,3,4 are associated with the first stem and they are placed on the first line.
- The unit digits 5,6,7,8,9 are associated with the second stem and they are placed on the second line from that stem.
- 3 | 9 represents 39 miles per hour.

Stemplots

- Stemplots work best when
 - Plotting a single quantitative variable
 - Small number of values to plot
 - Want to keep track of individual values (at least approximately)
 - Have two or more groups that we want to compare

Bar Graphs

- One bar for each category.
- The height of the bar tells the frequency.
- Bar graphs have 25 categories in the 20 horizontal axis, as 15 opposed to histograms 5 which have 0 measurements.

2.2 Measures of Center and Spread

- Before we used visual methods (estimations) to find out center (e.g. mean) and spread (e.g. SD). Now we will learn how to calculate them exactly.
- Measures of Center
 - Mean
 - Median
- Measures of Spread
 - Standard Deviation
 - Inter Quartile Range

13

Measures of Center

Mean

The average of the data values denoted \overline{x} .

Calculated as:

Measures of Center

Mean

The average of the data values denoted \overline{x} .

Calculated as:

$$\overline{x} = \frac{\text{sum of values}}{\text{number of values}} = \frac{\sum x}{n}$$

Measures of Center

Mean

The average of the data values denoted \overline{x} .

Calculated as:

$$\overline{x} = \frac{\text{sum of values}}{\text{number of values}} = \frac{\sum x}{n}$$

Example. Data Set: 5,12,34,18,37,11,9,21,30,6

Measures of Center

Mean

The average of the data values denoted \overline{x} .

Calculated as:

$$\overline{x} = \frac{\text{sum of values}}{\text{number of values}} = \frac{\sum x}{n}$$

Example. Data Set: 5,12,34,18,37,11,9,21,30,6

$$\overline{x} = \frac{5+12+34+18+37+11+9+21+30+6}{10} = 18.3$$

Measures of Center

■ Median

The value that divides the data into equal halves. Denoted median or Q_2 .

- Calculated as:
 - List all values in increasing order and find the middle one.
 - If there are *n* values then the middle one is (*n*+1)/2
 - If n is even use the fact that the mid-value between a and b is (a+b)/2

Measures of Center

■ Median

- Calculated as:
 - List all values in increasing order and find the middle one.
 - If there are *n* values then the middle one is (*n*+1)/2
 - If *n* is even use the fact that the mid-value between *a* and *b* is (*a*+*b*)/2
- Example. Ordered data set: 5,6,9,11,12,18,21,30,34,37

Measures of Center

■ Median

- Calculated as:
 - List all values in increasing order and find the middle one.
 - If there are *n* values then the middle one is (*n*+1)/2
 - If *n* is even use the fact that the mid-value between *a* and *b* is (*a*+*b*)/2
- Example. Ordered data set:

5,6,9,11,12,18,21,30,34,37

$$median = \frac{12+18}{2} = 15$$

Measure of spread around the Median

- First Quartile or Lower Quartile. Denoted Q₁
- Third Quartile or Upper Quartile. Denoted *Q*₃.
- These are calculated as the medians of each of the two halves determined by the original median.
- In case n is odd then the original median is removed from each of the two halves.

Inter Quartile Range

The distance between the Lower Quartile and the Upper Quartile. Denoted IOR

Measure of spread around the Median

- First Quartile or Lower Quartile. Denoted Q₁
- Third Quartile or Upper Quartile. Denoted Q₃.
- These are calculated as the medians of each of the two halves determined by the original median.
- In case n is odd then the original median is removed from each of the two halves.

Inter Quartile Range

The distance between the Lower Quartile and the Upper Quartile. Denoted IQR

- About 50% of the values are between Q_1 and Q_3 .

Measure of spread around the Mean

- Most useful measure of spread when working with random samples.
- The deviation of a value is how far apart is it from the mean.

Measure of spread around the Mean

- Most useful measure of spread when working with random samples.
- The deviation of a value is how far apart is it from the mean.

$$x - \overline{x}$$

Unfortunately it is easy to see that

Measure of spread around the Mean

- Most useful measure of spread when working with random samples.
- The deviation of a value is how far apart is it from the mean.

$$x-\overline{x}$$

- Unfortunately it is easy to see that
- $\sum (x-\overline{x})=0$

- Standard Deviation
- There are two kinds σ_n and σ_{n-1} .
- The default is σ_{n-1} .
- They are calculated as:

Measure of spread around the Mean

- Most useful measure of spread when working with random samples.
- The deviation of a value is how far apart is it from the mean.

$$x - \overline{x}$$

- Unfortunately it is easy to see that
- $\sum (x-\overline{x})=0$

- Standard Deviation
- There are two kinds σ_n and σ_{n-1} .

25

- The default is σ_{n-1}
- They are calculated as:

$$\sigma_n = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

$$\sigma_{n-1} = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$$

Measure of spread around the Mean

Example. Data: 2,7,8,12,12,19

$$n = 6$$
, $\bar{x} = (2+7+8+12+12+19)/6 = 10$

x	$x-\overline{x}$	$(x-\overline{x})^2$
2	-8	64
7	-3	9
8	-2	4
12	2	4
12	2	4
19	9	81

Sum

60	0	166

Measure of spread around the Mean

Example. Data: 2,7,8,12,12,19

$$n = 6, \ \overline{x} = (2+7+8+12+12+19)/6 = 10 \quad \sigma_n = \sqrt{\frac{\sum (x-x)}{n}}$$

x	$x-\overline{x}$	$(x-\overline{x})^2$
2	-8	64
7	-3	9
8	-2	4
12	2	4
12	2	4
19	9	81

Sum

<i>~</i>	$\sum (x - \overline{x})^2$
$o_{n-1} = $	$\frac{1}{n-1}$

$$\sigma_n = \sqrt{\frac{166}{6}} \approx 5.2599$$

$$\sigma_{n-1} = \sqrt{\frac{166}{5}} \approx 5.7619$$

Five Number Summary

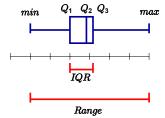
- Minimum = smallest value = min
- Lower or First Quartile = Q_1
- Median = Q_{2} .
- Upper or Third Quartile = Q_3
- Maximum = largest value = max
- In addition we also have
 - Range = max min
 - $IQR = Q_3 Q_1$

Five Number Summary

- Minimum = min
- Lower or First Quartile = Q_{1} .
- Median = Q_2
- Upper or Third Quartile = Q_3
- Maximum = max
- In addition we also have
 - Range = max min
 - $IQR = Q_3 Q_1$

- Example: Mammal speeds, 11,12,20,25,30,30,30,32,35, 39,40,40,40,42,45,48,50,70.
 - = min = 11
 - $Q_1 = 30$
 - Median = 37
 - $Q_3 = 42$
 - max = 70.
 - Range = 70 11 = 59
 - IQR = 42 30 = 12

Box Plots


- Example: Mammal speeds, 11,12,20,25,30,30,30,32,35, 39,40,40,40,42,45,48,50,70.
- A Box Plot is a graphical display of a five-point summary.

- min = 11
- $Q_1 = 30$
- Median = 37
- $Q_3 = 42$
- max = 70.
- Range = 70 11 = 59
- IQR = 42 30 = 12

Box Plots

- Example: Mammal speeds, 11,12,20,25,30,30,30,32,35, 39,40,40,40,42,45,48,50,70.
 - A Box Plot is a graphical display of a five-point summary.

- **■** *min* = 11
- $Q_1 = 30$
- Median = 37
- $Q_3 = 42$
- max = 70.
- Range = 70 11 = 59
- IQR = 42 30 = 12

